-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Single Number III
Question
- lintcode: (84) Single Number III
Given 2*n + 2 numbers, every numbers occurs twice except two, find them.
Example
Given [1,2,2,3,4,4,5,3] return 1 and 5
Challenge
O(n) time, O(1) extra space.
copy
题解
题 Single Number 的 follow up, 不妨设最后两个只出现一次的数分别为 x1, x2
. 那么遍历数组时根据两两异或的方法可得最后的结果为 x1 ^ x2
, 如果我们要分别求得 x1
和 x2
, 我们可以根据 x1 ^ x2 ^ x1 = x2
求得 x2
, 同理可得 x_1
. 那么问题来了,如何得到x1
和x2
呢?看起来似乎是个死循环。大多数人一般也就能想到这一步(比如我...)。
这道题的巧妙之处在于利用x1 ^ x2
的结果对原数组进行了分组,进而将x1
和x2
分开了。具体方法则是利用了x1 ^ x2
不为0的特性,如果x1 ^ x2
不为0,那么x1 ^ x2
的结果必然存在某一二进制位不为0(即为1),我们不妨将最低位的1提取出来,由于在这一二进制位上x1
和x2
必然相异,即x1
, x2
中相应位一个为0,另一个为1,所以我们可以利用这个最低位的1将x1
和x2
分开。又由于除了x1
和x2
之外其他数都是成对出现,故与最低位的1异或时一定会抵消,十分之精妙!
Java
public class Solution {
/**
* @param A : An integer array
* @return : Two integers
*/
public List<Integer> singleNumberIII(int[] A) {
ArrayList<Integer> nums = new ArrayList<Integer>();
if (A == null || A.length == 0) return nums;
int x1xorx2 = 0;
for (int i : A) {
x1xorx2 ^= i;
}
// get the last 1 bit of x1xorx2, e.g. 1010 ==> 0010
int last1Bit = x1xorx2 - (x1xorx2 & (x1xorx2 - 1));
int single1 = 0, single2 = 0;
for (int i : A) {
if ((last1Bit & i) == 0) {
single1 ^= i;
} else {
single2 ^= i;
}
}
nums.add(single1);
nums.add(single2);
return nums;
}
}
copy
源码分析
求一个数二进制位1的最低位方法为 x1xorx2 - (x1xorx2 & (x1xorx2 - 1))
, 其他位运算的总结可参考 Bit Manipulation。利用last1Bit
可将数组的数分为两组,一组是相应位为0,另一组是相应位为1.
复杂度分析
两次遍历数组,时间复杂度 , 使用了部分额外空间,空间复杂度 .