-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
K Closest Points
Problem
Metadata
- tags: Heap, Amazon, LinkedIn
- difficulty: Medium
- source(lintcode): https://www.lintcode.com/problem/k-closest-points/
Description
Given some points
and a point origin
in two dimensional space, find k
points out of the some points which are nearest to origin
.
Return these points sorted by distance, if they are same with distance, sorted by x-axis, otherwise sorted by y-axis.
Example
Given points = [[4,6],[4,7],[4,4],[2,5],[1,1]]
, origin = [0, 0]
, k = 3
return [[1,1],[2,5],[4,4]]
题解
和普通的字符串及数目比较,此题为距离的比较。
Java
/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
/**
* @param points: a list of points
* @param origin: a point
* @param k: An integer
* @return: the k closest points
*/
public Point[] kClosest(Point[] points, Point origin, int k) {
// write your code here
Queue<Point> heap = new PriorityQueue<Point>(new DistanceComparator(origin));
for (Point point : points) {
if (heap.size() < k) {
heap.offer(point);
} else {
Point peek = heap.peek();
if (distance(peek, origin) <= distance(point, origin)) {
continue;
} else {
heap.poll();
heap.offer(point);
}
}
}
int minK = Math.min(k, heap.size());
Point[] kClosestPoints = new Point[minK];
for (int i = 1; i <= minK; i++) {
kClosestPoints[minK - i] = heap.poll();
}
return kClosestPoints;
}
public int distance(Point p, Point origin) {
return (p.x - origin.x) * (p.x - origin.x) +
(p.y - origin.y) * (p.y - origin.y);
}
class DistanceComparator implements Comparator<Point> {
private Point origin = null;
public DistanceComparator(Point origin) {
this.origin = origin;
}
public int compare(Point p1, Point p2) {
int d1 = distance(p1, origin);
int d2 = distance(p2, origin);
if (d1 != d2) {
return d2 - d1;
} else {
if (p1.x != p2.x) {
return p2.x - p1.x;
} else {
return p2.y - p1.y;
}
}
}
}
}
copy
源码分析
注意 Comparator 的用法和大小根堆的选择即可。
复杂度分析
堆的删除插入操作,最大为 K, 故时间复杂度为 , 空间复杂度为 .