-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Length of Last Word
Tags: String, Easy
Question
- leetcode: Length of Last Word
- lintcode: Length of Last Word
Problem Statement
Given a string s consists of upper/lower-case alphabets and empty space
characters ' '
, return the length of last word in the string.
If the last word does not exist, return 0.
Note: A word is defined as a character sequence consists of non-space characters only.
For example,
Given s = "Hello World"
,
return 5
.
题解
关键点在于确定最后一个字符串之前的空格,此外还需要考虑末尾空格这一特殊情况,容易想到的是利用一前一后两个索引记录,最后相减即可。但其实可以巧妙地直接利用非空字符串长度表示。除了通常简单粗暴的方法,我们还可以尝试使用正则表达式这一利器对字符串进行处理。
Python
class Solution(object):
def lengthOfLastWord(self, s):
"""
:type s: str
:rtype: int
"""
if s is None: return 0
last_word = s.split()
return len(last_word[-1]) if last_word else 0
copy
Python
class Solution(object):
def lengthOfLastWord(self, s):
"""
:type s: str
:rtype: int
"""
if s is None: return 0
m = re.search(r'(?P<word>\S+)\s*$', s)
return len(m.group('word')) if m else 0
copy
Python
class Solution(object):
def lengthOfLastWord(self, s):
"""
:type s: str
:rtype: int
"""
if s is None: return 0
cnt = 0
for c in reversed(s):
if c == ' ':
if cnt > 0: break
else:
cnt += 1
return cnt
copy
C++
class Solution {
public:
int lengthOfLastWord(string s) {
if (s.empty()) return 0;
int x = s.find_last_not_of(' ');
return (x == std::string::npos) ? 0 : x - s.find_last_of(' ', x);
}
};
copy
C++
class Solution {
public:
int lengthOfLastWord(string s) {
if (s.length() == 0) return 0;
int cnt = 0;
for (int i = s.length() - 1; i >= 0; --i) {
if (s[i] == ' ') {
if (cnt > 0) break;
} else {
cnt++;
}
}
return cnt;
}
};
copy
Java
public class Solution {
public int lengthOfLastWord(String s) {
if (s == null || s.isEmpty()) return 0;
int len = 0;
for (int i = s.length() - 1; i >= 0; i--) {
if (s.charAt(i) == ' ') {
if (len > 0) return len;
} else {
len++;
}
}
return len;
}
}
copy
源码分析
注意检查输入参数和索引即可,当前长度信息和当前索引字符是否为空格这两种信息可以结合使用避免硬标记。
复杂度分析
遍历一次,时间复杂度 ,不复制源字符串,空间复杂度 .