-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Search in Rotated Sorted Array II
Question
- leetcode: Search in Rotated Sorted Array II | LeetCode OJ
- lintcode: (63) Search in Rotated Sorted Array II
Problem Statement
Follow up for "Search in Rotated Sorted Array": What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
题解
仔细分析此题和之前一题的不同之处,前一题我们利用A[start] < A[mid]
这一关键信息,而在此题中由于有重复元素的存在,在A[start] == A[mid]
时无法确定有序数组,此时只能依次递增start/递减end以缩小搜索范围,时间复杂度最差变为O(n)。
C++
class Solution {
/**
* param A : an integer ratated sorted array and duplicates are allowed
* param target : an integer to be search
* return : a boolean
*/
public:
bool search(vector<int> &A, int target) {
if (A.empty()) {
return false;
}
vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target == A[mid]) {
return true;
}
if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {
end = mid;
} else {
start = mid;
}
} else if (A[start] > A[mid]) {
// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {
start = mid;
} else {
end = mid;
}
} else {
// increment start
++start;
}
}
if (A[start] == target || A[end] == target) {
return true;
}
return false;
}
};
copy
Java
public class Solution {
/**
* param A : an integer ratated sorted array and duplicates are allowed
* param target : an integer to be search
* return : a boolean
*/
public boolean search(int[] A, int target) {
if (A == null || A.length == 0) return false;
int lb = 0, ub = A.length - 1;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (A[mid] == target) return true;
if (A[mid] > A[lb]) {
// case1: numbers between lb and mid are sorted
if (A[lb] <= target && target <= A[mid]) {
ub = mid;
} else {
lb = mid;
}
} else if (A[mid] < A[lb]) {
// case2: numbers between mid and ub are sorted
if (A[mid] <= target && target <= A[ub]) {
lb = mid;
} else {
ub = mid;
}
} else {
// case3: A[mid] == A[lb]
lb++;
}
}
if (target == A[lb] || target == A[ub]) {
return true;
}
return false;
}
}
copy
源码分析
在A[lb] == A[mid]
时递增lb序号即可。
复杂度分析
最差情况下 , 平均情况下 .