-
Preface
- FAQ
-
Part I - Basics
- Basics Data Structure
- Basics Sorting
- Basics Algorithm
- Basics Misc
-
Part II - Coding
- String
-
Integer Array
-
Remove Element
-
Zero Sum Subarray
-
Subarray Sum K
-
Subarray Sum Closest
-
Recover Rotated Sorted Array
-
Product of Array Exclude Itself
-
Partition Array
-
First Missing Positive
-
2 Sum
-
3 Sum
-
3 Sum Closest
-
Remove Duplicates from Sorted Array
-
Remove Duplicates from Sorted Array II
-
Merge Sorted Array
-
Merge Sorted Array II
-
Median
-
Partition Array by Odd and Even
-
Kth Largest Element
-
Remove Element
-
Binary Search
-
First Position of Target
-
Search Insert Position
-
Search for a Range
-
First Bad Version
-
Search a 2D Matrix
-
Search a 2D Matrix II
-
Find Peak Element
-
Search in Rotated Sorted Array
-
Search in Rotated Sorted Array II
-
Find Minimum in Rotated Sorted Array
-
Find Minimum in Rotated Sorted Array II
-
Median of two Sorted Arrays
-
Sqrt x
-
Wood Cut
-
First Position of Target
-
Math and Bit Manipulation
-
Single Number
-
Single Number II
-
Single Number III
-
O1 Check Power of 2
-
Convert Integer A to Integer B
-
Factorial Trailing Zeroes
-
Unique Binary Search Trees
-
Update Bits
-
Fast Power
-
Hash Function
-
Happy Number
-
Count 1 in Binary
-
Fibonacci
-
A plus B Problem
-
Print Numbers by Recursion
-
Majority Number
-
Majority Number II
-
Majority Number III
-
Digit Counts
-
Ugly Number
-
Plus One
-
Palindrome Number
-
Task Scheduler
-
Single Number
-
Linked List
-
Remove Duplicates from Sorted List
-
Remove Duplicates from Sorted List II
-
Remove Duplicates from Unsorted List
-
Partition List
-
Add Two Numbers
-
Two Lists Sum Advanced
-
Remove Nth Node From End of List
-
Linked List Cycle
-
Linked List Cycle II
-
Reverse Linked List
-
Reverse Linked List II
-
Merge Two Sorted Lists
-
Merge k Sorted Lists
-
Reorder List
-
Copy List with Random Pointer
-
Sort List
-
Insertion Sort List
-
Palindrome Linked List
-
LRU Cache
-
Rotate List
-
Swap Nodes in Pairs
-
Remove Linked List Elements
-
Remove Duplicates from Sorted List
-
Binary Tree
-
Binary Tree Preorder Traversal
-
Binary Tree Inorder Traversal
-
Binary Tree Postorder Traversal
-
Binary Tree Level Order Traversal
-
Binary Tree Level Order Traversal II
-
Maximum Depth of Binary Tree
-
Balanced Binary Tree
-
Binary Tree Maximum Path Sum
-
Lowest Common Ancestor
-
Invert Binary Tree
-
Diameter of a Binary Tree
-
Construct Binary Tree from Preorder and Inorder Traversal
-
Construct Binary Tree from Inorder and Postorder Traversal
-
Subtree
-
Binary Tree Zigzag Level Order Traversal
-
Binary Tree Serialization
-
Binary Tree Preorder Traversal
- Binary Search Tree
- Exhaustive Search
-
Dynamic Programming
-
Triangle
-
Backpack
-
Backpack II
-
Minimum Path Sum
-
Unique Paths
-
Unique Paths II
-
Climbing Stairs
-
Jump Game
-
Word Break
-
Longest Increasing Subsequence
-
Palindrome Partitioning II
-
Longest Common Subsequence
-
Edit Distance
-
Jump Game II
-
Best Time to Buy and Sell Stock
-
Best Time to Buy and Sell Stock II
-
Best Time to Buy and Sell Stock III
-
Best Time to Buy and Sell Stock IV
-
Distinct Subsequences
-
Interleaving String
-
Maximum Subarray
-
Maximum Subarray II
-
Longest Increasing Continuous subsequence
-
Longest Increasing Continuous subsequence II
-
Maximal Square
-
Triangle
- Graph
- Data Structure
- Big Data
- Problem Misc
-
Part III - Contest
- Google APAC
- Microsoft
- Appendix I Interview and Resume
-
Tags
Sqrt(x)
Tags: Binary Search, Math, Medium
Question
Problem Statement
Implement int sqrt(int x)
.
Compute and return the square root of x.
题解 - 二分搜索
由于只需要求整数部分,故对于任意正整数 , 设其整数部分为 , 显然有 , 求解 的值也就转化为了在有序数组中查找满足某种约束条件的元素,显然二分搜索是解决此类问题的良方。
Python
class Solution(object):
def mySqrt(self, x):
"""
:type x: int
:rtype: int
"""
if x < 0:
return -1
elif x == 0:
return 0
lb, ub = 1, x
while lb + 1 < ub:
mid = (lb + ub) / 2
if mid**2 == x:
return mid
elif mid**2 < x:
lb = mid
else:
ub = mid
return lb
copy
C++
class Solution {
public:
int mySqrt(int x) {
if (x < 0) return -1;
if (x == 0) return 0;
int lb = 1, ub = x;
long long mid = 0;
while (lb + 1 < ub) {
mid = lb + (ub - lb) / 2;
if (mid * mid == x) {
return mid;
} else if (mid * mid < x) {
lb = mid;
} else {
ub = mid;
}
}
return lb;
}
};
copy
Java
public class Solution {
public int mySqrt(int x) {
if (x < 0) return -1;
if (x == 0) return 0;
int lb = 1, ub = x;
long mid = 0;
while (lb + 1 < ub) {
mid = lb + (ub - lb) / 2;
if (mid * mid == x) {
return (int)mid;
} else if (mid * mid < x) {
lb = (int)mid;
} else {
ub = (int)mid;
}
}
return (int)lb;
}
}
copy
源码分析
- 异常检测,先处理小于等于0的值。
- 使用二分搜索的经典模板,注意不能使用
lb < ub
, 否则在给定值1时产生死循环。 - 最后返回平方根的整数部分
lb
. - C++ 代码
mid
需要定义为long long
,否则计算平方时会溢出,定义 mid 放在循环体外部有助于提升效率。
二分搜索过程很好理解,关键是最后的返回结果还需不需要判断?比如是取 lb, ub, 还是 mid? 我们首先来分析下二分搜索的循环条件,由while
循环条件lb + 1 < ub
可知,lb
和 ub
只可能有两种关系,一个是ub == 1 || ub ==2
这一特殊情况,返回值均为1,另一个就是循环终止时lb
恰好在ub
前一个元素。设值 x 的整数部分为 k, 那么在执行二分搜索的过程中 关系一直存在,也就是说在没有找到 时,循环退出时有 , 取整的话显然就是lb
了。
复杂度分析
经典的二分搜索,时间复杂度为 , 使用了lb
, ub
, mid
变量,空间复杂度为 .
除了使用二分法求平方根近似解之外,还可使用牛顿迭代法进一步提高运算效率,欲知后事如何,请猛戳 求平方根sqrt()函数的底层算法效率问题 -- 简明现代魔法,不得不感叹算法的魔力!